This version is available at https://strathprints.strath.ac.uk/7495/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the
Abstract:Thin shell torispherical pressure vessel heads are known to exhibit complex elasticplastic deformation and buckling behaviour under static pressure. In pressure vessel Design by Analysis, the designer is required to assess both of these behaviour modes when specifying the allowable static load. The EN and ASME Boiler and Pressure Vessel Codes permit the use of inelastic analysis in design by analysis, known as the direct route in the EN Code. In this paper, plastic collapse or gross plastic deformation loads are evaluated for two sample torispherical heads by 2D and 3D FEA based on an elastic-perfectly plastic material model. Small and large deformation effects are considered in the 2D analyses and the effect of geometry and load perturbation are considered in the 3D analysis. The plastic load is determined by applying the ASME Twice Elastic Slope Criterion of plastic collapse and an alternative plastic criterion, the Plastic Work Curvature criterion. The formation of the gross plastic deformation mechanism in the models is considered in relation to the elastic-plastic buckling response of the vessels. It is concluded that in both cases, design is limited by formation of an axisymmetric gross plastic deformation in the knuckle of the vessels prior to formation of non-axisymmetric buckling modes.