Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
GDF15 (growth differentiation factor 15) is a marker of cellular energetic stress linked to physical-mental illness, aging, and mortality. However, questions remain about its dynamic properties and measurability in human biofluids other than blood. Here, we examine the natural dynamics and psychobiological regulation of plasma and saliva GDF15 in four human studies representing 4,749 samples from 188 individuals. We show that GDF15 protein is detectable in saliva (8% of plasma concentration), likely produced by salivary glands secretory duct cells. Plasma and saliva GDF15 levels are not correlated. Using a brief laboratory socio-evaluative stressor paradigm, we find that psychological stress increases plasma (+3.4-5.3%) and saliva GDF15 (+45%) with distinct kinetics, within minutes. Moreover, saliva GDF15 exhibits a robust awakening response, declining by ~42-92% within 30-45 minutes from its peak level at the time of waking up. Clinically, individuals with genetic mitochondrial OxPhos diseases show elevated baseline plasma and saliva GDF15, and post-stress GDF15 levels in both biofluids correlate with multi-system disease severity, exercise intolerance, and the subjective experience of fatigue. Taken together, our data establish the dynamic properties of saliva GDF15, reveal it as a stress-sensitive, and as a clinically relevant marker of mitochondrial diseases. These findings point to a shared psychobiological pathway integrating metabolic and mental stress.
GDF15 (growth differentiation factor 15) is a marker of cellular energetic stress linked to physical-mental illness, aging, and mortality. However, questions remain about its dynamic properties and measurability in human biofluids other than blood. Here, we examine the natural dynamics and psychobiological regulation of plasma and saliva GDF15 in four human studies representing 4,749 samples from 188 individuals. We show that GDF15 protein is detectable in saliva (8% of plasma concentration), likely produced by salivary glands secretory duct cells. Plasma and saliva GDF15 levels are not correlated. Using a brief laboratory socio-evaluative stressor paradigm, we find that psychological stress increases plasma (+3.4-5.3%) and saliva GDF15 (+45%) with distinct kinetics, within minutes. Moreover, saliva GDF15 exhibits a robust awakening response, declining by ~42-92% within 30-45 minutes from its peak level at the time of waking up. Clinically, individuals with genetic mitochondrial OxPhos diseases show elevated baseline plasma and saliva GDF15, and post-stress GDF15 levels in both biofluids correlate with multi-system disease severity, exercise intolerance, and the subjective experience of fatigue. Taken together, our data establish the dynamic properties of saliva GDF15, reveal it as a stress-sensitive, and as a clinically relevant marker of mitochondrial diseases. These findings point to a shared psychobiological pathway integrating metabolic and mental stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.