A Pervin space is a set equipped with a bounded sublattice of its powerset, while its pointfree version, called Frith frame, consists of a frame equipped with a generating bounded sublattice. It is known that the dual adjunction between topological spaces and frames extends to a dual adjunction between Pervin spaces and Frith frames, and that the latter may be seen as representatives of certain quasi-uniform structures. As such, they have an underlying bitopological structure and inherit a natural notion of completion. In this paper we start by exploring the bitopological nature of Pervin spaces and of Frith frames, proving some categorical equivalences involving zero-dimensional structures. We then provide a conceptual proof of a duality between the categories of T 0 complete Pervin spaces and of complete Frith frames. This enables us to interpret several Stone-type dualities as a restriction of the dual adjunction between Pervin spaces and Frith frames along full subcategory embeddings. Finally, we provide analogues of Banaschewski and Pultr's characterizations of sober and T D topological spaces in the setting of Pervin spaces and of Frith frames, highlighting the parallelism between the two notions.