2006
DOI: 10.2178/jsl/1164060459
|View full text |Cite
|
Sign up to set email alerts
|

A polarized partition relation for weakly compact cardinals using elementary substructures

Abstract: We show that if κ is a weakly compact cardinal, thenfor any ordinals α < κ+ and μ < κ, and any finite ordinals m and n. This polarized partition relation represents the statement that for any partitionof κ × κ+ into m + μ pieces either there are A ∈ [κ]κ, B ∈ [κ]+]α and i < m with A × B ⊆ Ki or there are C ∈ [κ]κ, , and j < μ with C × D ⊆ Lj. Related results for measurable and almost measurable κ are also investigated. Our proofs of these relations involve the use of elementary substructures of set… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2017
2017
2017
2017

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 10 publications
0
0
0
Order By: Relevance