• This is a conference paper, SAE Paper 2008-01-1802 [ c 2008. This paper is posted on this site with permission from SAE International. As a user of this site, you are permitted to view this paper on-line, and print one copy of this paper at no cost for your use only. This paper may not be copied, distributed or forwarded to others for further use without permission from SAE. This paper is also available from: Paper 2008-01-1802© 2008 This paper is posted on this site with permission from SAE International. As a user of this site, you are permitted to view this paper on-line, and print one copy of this paper at no cost for your use only. This paper may not be copied, distributed or forwarded to others for further use without permission from SAE.By mandate of the Engineering Meetings Board, this paper has been approved for SAE publication upon completion of a peer review process by a minimum of three (3) Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in SAE Transactions.Persons wishing to submit papers to be considered for presentation or publication by SAE should send the manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE.
Printed in USASAE Paper 2008-01-1802 © 2008 SAE International. This paper is posted on this site with permission from SAE International. As a user of this site, you are permitted to view this paper on-line, and print one copy of this paper at no cost for your use only. This paper may not be copied, distributed or forwarded to others for further use without permission from SAE.
ABSTRACTHydrogen crossover and membrane hydration are significant issues for polymer electrolyte fuel cells (PEFC). Hydrogen crossover amounts to a quantity of unspent fuel, thereby reducing the fuel efficiency of the cell, but more significantly it also gives rise to the formation of hydrogen peroxide in the cathode catalyst layer which acts to irreversibly degenerate the polymer electrolyte. Membrane hydration not only strongly governs the performance of the cell, most noticeable through its effect on the ionic conductivity of the membrane, it also influences the onset and propagation of internal degradation and failure mechanisms that curtail the reliability and safety of PEFCs. This paper focuses on how hydrogen crossover and membrane hydration are affected by; (a) characteristic cell geometries, and (b) operating conditions relevant to automotive fuel cells. The numerical study is based on the application of a general transport equation developed previously to model multi-species transport through discontinuous materials. The results quantify (1) the effectiveness of different practical mechanisms which can be applied to curtail the effects of hydrogen crossover in automotive fuel cells and (2) the implications on water content within the membr...