How genomic diversity within bacterial populations originates and is maintained in the presence of frequent recombination is a central problem in understanding bacterial evolution. Natural populations of Borrelia burgdorferi, the bacterial agent of Lyme disease, consist of diverse genomic groups co-infecting single individual vertebrate hosts and tick vectors. To understand mechanisms of sympatric genome differentiation in B. burgdorferi, we sequenced and compared 23 genomes representing major genomic groups in North America and Europe. Linkage analysis of .13,500 single-nucleotide polymorphisms revealed pervasive horizontal DNA exchanges. Although three times more frequent than point mutation, recombination is localized and weakly affects genome-wide linkage disequilibrium. We show by computer simulations that, while enhancing population fitness, recombination constrains neutral and adaptive divergence among sympatric genomes through periodic selective sweeps. In contrast, simulations of frequency-dependent selection with recombination produced the observed pattern of a large number of sympatric genomic groups associated with major sequence variations at the selected locus. We conclude that negative frequency-dependent selection targeting a small number of surface-antigen loci (ospC in particular) sufficiently explains the maintenance of sympatric genome diversity in B. burgdorferi without adaptive divergence. We suggest that pervasive recombination makes it less likely for local B. burgdorferi genomic groups to achieve host specialization. B. burgdorferi genomic groups in the northeastern United States are thus best viewed as constituting a single bacterial species, whose generalist nature is a key to its rapid spread and human virulence. G ENETIC discontinuity, the basis of biodiversity, is ubiquitous in prokaryotes as well as in eukaryotes. Most bacterial populations display a highly clonal genetic structure, in which the observable number of multilocus genotypes is far fewer than the number expected under the assumption of free recombination (Maynard Smith et al. 1993). Bacterial clonality was originally thought of as a result of a lack or rarity of recombination among asexually reproducing and independently evolving clones (Ochman and Selander 1984). Since then, molecular surveys of natural bacterial populations using protein electrophoresis, multilocus sequencing typing (MLST), and whole-genome PRJNA3, PRJNA28633, PRJNA19839, PRJNA29359, PRJNA28629, PRJNA29357, PRJNA21003, PRJNA19835, PRJNA28627, PRJNA21001, PRJNA29361, PRJNA28621, PRJNA19837, PRJNA20999, PRJNA28631, PRJNA29363, PRJNA17057, PRJNA19841, PRJNA12554, PRJNA28625, PRJNA29573, PRJNA19843, and PRJNA28635. 1 Present address: Odum School of Ecology, University of Georgia, Athens, GA 30602. sequencing revealed that horizontal genetic exchange is in fact often more frequent than point mutations in bacteria, including species known as strongly clonal (Maynard Smith et al. 1993;Feil and Spratt 2001;Didelot and Maiden 2010;Retc...