Cervical cancer, primarily caused by high-risk human papillomavirus (HR-HPV) types 16 and 18, is a major global health concern. Persistent HR-HPV infection can progress from reversible precancerous lesions to invasive cervical cancer, which is driven by the oncogenic activity of human papillomavirus (HPV) genes, particularly E6 and E7. Traditional screening methods, including cytology and HPV testing, have limited sensitivity and specificity. This review explores the application of p16/Ki-67 dual-staining cytology for cervical cancer screening. This advanced immunocytochemical method allows for simultaneously detecting p16 and Ki-67 proteins within cervical epithelial cells, offering a more specific approach for triaging HPV-positive women. Dual staining and traditional methods are compared, demonstrating their high sensitivity and negative predictive value but low specificity. The increased sensitivity of dual staining results in higher detection rates of CIN2+ lesions, which is crucial for preventing cervical cancer progression. However, its low specificity may lead to increased false-positive results and unnecessary biopsies. The implications of integrating dual staining into contemporary screening strategies, particularly considering the evolving landscape of HPV vaccination and changes in HPV genotype prevalence, are also discussed. New guidelines and further research are necessary to elucidate the long-term effects of integrating dual staining into screening protocols.