2004
DOI: 10.1080/00224065.2004.11980261
|View full text |Cite
|
Sign up to set email alerts
|

A Posterior Predictive Approach to Multiple Response Surface Optimization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
71
0
9

Year Published

2006
2006
2017
2017

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 120 publications
(80 citation statements)
references
References 19 publications
0
71
0
9
Order By: Relevance
“…The regression models were attained (Table 4) from the results obtained to the proposed design (Table 3) in function of the number of elements per axis Deviation relative to experimental data for NaCl and KCl were highly correlated (r=0.98), and therefore the use of only one of these dependent variables is recommended in the simultaneous optimization (Peterson, 2004). Thus, when one is minimized the other one will consequently be minimized as well.…”
Section: Results and Results And Results Andmentioning
confidence: 99%
“…The regression models were attained (Table 4) from the results obtained to the proposed design (Table 3) in function of the number of elements per axis Deviation relative to experimental data for NaCl and KCl were highly correlated (r=0.98), and therefore the use of only one of these dependent variables is recommended in the simultaneous optimization (Peterson, 2004). Thus, when one is minimized the other one will consequently be minimized as well.…”
Section: Results and Results And Results Andmentioning
confidence: 99%
“…En el presente trabajo se utiliza un enfoque bayesiano propuesto por Peterson (2004), en el que también se considera la probabilidad de que el proceso cumpla con los requisitos de calidad de las características del producto a optimizar consideradas en el análisis y toma en cuenta la estructura de correlación y la incertidumbre en los parámetros de los modelos. Miro-Quesada et al (2004), mencionan que el problema de la optimización de respuestas múltiples consiste en escoger los valores de los k factores controlables x i , tal que el vector de respuestas y tenga ciertas propiedades deseadas.…”
Section: El Enfoque Bayesiano Para Optimización De Respuestas Múltiplesunclassified
“…Según Peterson (2004), debido a que la ecuación (5), sigue una distribución t multivariada, es fácil simular valores para y de esta densidad predictiva. Johnson (1987) en su libro Multivariate statistical simulation menciona que se puede simular una variable aleatoria t -variada y, mediante la simulación de una variable aleatoria normal multivariada y una variable aleatoria chi-cuadrada independiente (Peterson, 2004).…”
Section: El Enfoque Bayesiano Para Optimización De Respuestas Múltiplesunclassified
See 1 more Smart Citation
“…The key statistical challenges to overcome to make QbD a reality for such longitudinal data are critical: It can be postulated that a Bayesian approach is the only option to practically achieve such an objective as required by ICH-Q8. The justification and added value of the use of Bayesian statistics for proper QbD implementation has been discussed extensively by several authors such as Peterson et al [13][14][15][16][17], Miró-Quesada [12] and Lebrun et al [11].…”
Section: Introductionmentioning
confidence: 99%