Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a âdopamine hypothesis of ASDâ which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.