Generalized additive models (GAMs) with bivariate smoothing functions have been applied to estimate spatial variation in risk for many types of cancers. Only a handful of studies have evaluated the performance of smoothing functions applied in GAMs with regard to different geographical areas of elevated risk and different risk levels. This study evaluates the ability of different smoothing functions to detect overall spatial variation of risk and elevated risk in diverse geographical areas at various risk levels using a simulation study. We created five scenarios with different true risk area shapes (circle, triangle, linear) in a square study region. We applied four different smoothing functions in the GAMs, including two types of thin plate regression splines (TPRS) and two versions of locally weighted scatterplot smoothing (loess). We tested the null hypothesis of constant risk and detected areas of elevated risk using analysis of deviance with permutation methods and assessed the performance of the smoothing methods based on the spatial detection rate, sensitivity, accuracy, precision, power, and false-positive rate. The results showed that all methods had a higher sensitivity and a consistently moderate-to-high accuracy rate when the true disease risk was higher. The models generally performed better in detecting elevated risk areas than detecting overall spatial variation. One of the loess methods had the highest precision in detecting overall spatial variation across scenarios and outperformed the other methods in detecting a linear elevated risk area. The TPRS methods outperformed loess in detecting elevated risk in two circular areas.