Recently, unmanned aerial vehicles (UAVs) have been used in various fields, such as military, logistics, transportation, construction, and agriculture, making it possible to apply the limited activities of humans to various and wide ranges. In addition, UAVs have been utilized to construct topographic data that are more precise than existing satellite images or cadastral maps. In this study, a monitoring point for preventing flood damage in an urban area was selected using a UAV. In addition, the topographic data were constructed using a UAV, and the flow of rainwater was examined using the watershed analysis in an urban area. An orthomosaic, a digital surface model (DSM), and a three-dimensional (3D) model were constructed for the topographic data, and a precision of 0.051 m based on the root mean square error (RMSE) was achieved through the observation of ground control points (GCPs). On the other hand, for the watershed analysis in the urban area, the point in which the flow of rainwater converged was analyzed by adjusting the thresholds. A monitoring point for preventing flood damage was proposed by examining the topographic characteristics of the target area related to the inflow of rainwater.