We have engineered a robotic laser ablation and tweezers microscope that can be operated via the internet using most internet accessible devices, including laptops, desktop computers, and personal data assistants (PDAs). The system affords individual investigators the ability to conduct micromanipulation experiments (cell surgery or trapping) from remote locations (i.e., between the US and Australia). This system greatly expands the availability of complex and expensive research technologies via investigator-networking over the internet. It serves as a model for other ''internet-friendly'' technologies leading to large scale networking and data-sharing between investigators, groups, and institutions on a global scale. The system offers three unique features: (1) the freedom to operate the system from any internet-capable computer, (2) the ability to image, ablate, and/or trap cells and their organelles by ''remote-control,'' and (3) the security and convenience of controlling the system in the laboratory on the user's own personal computer and not on the host machine. Four ''proof of principle'' experiments were conducted: (1) precise control of microscope movement and live cell visualization, (2) subcellular microsurgery on the microtubule organizing center of live cells viewed under phase contrast and fluorescence microscopy, (3) precise targeting of multiple sites within single red blood cells, and (4) optical trapping of 10 lm diameter polystyrene microspheres. Microsc. Res. Tech. 68:65-74, 2005. V