Numerous attempts have been made to create a secure system that meets the criteria and requirements of the automotive vehicle development life cycle. However, a critical gap exists in the secure development lifecycle, particularly concerning the development and maintenance of software after the vehicle has been sold by the manufacturer. This step is often overlooked by original equipment manufacturers (OEMs), especially after the expiration of the vehicle warranty period, given the cost that it will require to update and test the software in their vehicles. This paper addresses the issues that affect current and future vehicle cybersecurity, during the maintenance of cybersecurity, and how the neglect of it could end up creating hazards for the vehicle owner or other road users. To accomplish this, we will employ the technology adoption model (TAM) as a theoretical framework, which is used to understand and predict how organizations adopt technology. Thus, through qualitative and quantitative research, including text mining, we identify the challenges in the adoption and diffusion of cybersecurity maintenance in the automotive sector and its supply chain. In addition, we propose possible solutions on how to maintain a level of security that will benefit road users, OEMs and regulators, covering the cybersecurity needs for the vehicle’s usable life, taking into account the vehicle’s heterogeneity of components and technology, connectivity, environmental impact and cost of production and maintenance of a vehicle.