Abstract:Model predictions concerning the endangerment of on-site and off-site damages due to runoff, soil erosion and sedimentation under alternative design and operation policies are of particular importance in recent catchment planning and management. By using the raster-based model approach, linear landscape elements, such as streets and roads, and their impacts on flow paths are often neglected. Therefore, the aim of this study was to analyse the effects of linear landscape elements on patterns of soil erosion, sediment transport and sedimentation. To accomplish this, roads are considered while determining flow paths. Simulations in the well-investigated catchment of the Wahnbach River (54 km²) in a low mountain range in Germany were carried out using a combination of different models for hydrology and soil erosion. Although the study focuses on the catchment scale of the Wahnbach River, detailed investigations concerning the sub-catchment scale (21 ha) were also conducted. The simulation results show that these spatial structures mainly affect the pattern of soil erosion and sedimentation. On the subcatchment scale, improved identification of active zones for sediment dynamic becomes possible. On the catchment scale, the predicted runoff is about 20% higher, and sediment outputs were four times larger than predicted when roads were considered. Soil erosion increases by 37% whereas sedimentation is reduced by 29%. The model improvement could not be evaluated on the catchment scale because of the high variability and heterogeneity of land use and soils, but road impacts could be explained by simulations on the sub-catchment scale. It can be concluded that runoff concentration due to rerouted flow paths leads to lower non-concentrated and higher concentric-linear surface runoff. Thus, infiltration losses decline and surface runoff and soil erosion increase because sedimentation is reduced. Further, runoff concentration can cause soil erosion hot spots. In the model concept used in this study, buffering of runoff and sediments on the upslope side of roads and in local depressions adjacent to roads cannot be simulated. Flow paths will only be rerouted because of road impacts, but the temporal ponding of water is not simulated. Therefore, the drastic increase of predicted sediment output due to road impact does not seem to be reliable. However, results indicate that the consideration of roads when determining flow paths enabled more detailed simulations of surface runoff, soil erosion and sedimentation. Thus, progress in model-based decision-making support for river catchment planning and management can be achieved.