Introducción: el artículo es resultado de la investigación “Estudio de patologías presentes en la columna vertebral empleando técnicas de inteligencia artificial como apoyo a los procesos de diagnóstico”, desarrollada en la Universidad del Valle entre 2016 y 2017. Problema: con frecuencia, los estudios y análisis que a menudo se realizan a las afecciones de salud en seres humanos con frecuencia son invasivos, lo cual conlleva problemas mayores. Objetivo: aportar un método de estudio a partir de los atributos biomecánicos de seres humanos para la detección de patologías que se presentan en la columna vertebral. Metodología: el trabajo se fundamentó en probar tres técnicas de reconocimiento de patrones; Bayes como técnica clásica de reconocimiento; y técnicas inteligentes como las redes neuronales de base radial (rbf), máquinas de soporte vectorial (svm) y redes neuronales probabilísticas (pnn). Resultados: durante el proceso de clasificación de las patologías a tratar, la que mejores resultados aportó fue la técnica de pnn, mientras que las demás presentaron buenos resultados de clasificación para una patología en particular. Conclusión: se comprobó que la aplicación de estas técnicas de estudio aporta características importantes a los procesos de diagnóstico de patologías presentes en la columna vertebral, tales como hernia discal y espondilolistesis. Originalidad: este trabajo se realizó con información de pacientes reales, y presenta técnicas de estudio y resultados importantes sobre el diagnóstico de patologías de columna vertebral. Limitaciones: el estudio de patologías de columna vertebral requiere tener más información sobre los atributos biomecánicos de los seres humanos.