Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Chemically modified nucleic acid molecules have been developed as oligonucleotide therapeutics, and its assay is critical in quality assurance. The common DNA/RNA quantification method using UV-260 nm can lack accuracy because of structure modifications and the possible formation of higher-order structure (HOS). Additionally, process-associated water and counterions affect the accuracy in gravimetric analysis. Thus, to improve accuracy, efficiency, and flexibility, in this work a fast (<1 h) externally referenced 31 P quantitative-NMR (qNMR) method was developed. The qNMR assay results agreed within 1−5% of the UV-260 nm results for the single-stranded DNA standards, confirming the method accuracy. Next, an NMR and UV comparison study was performed on intact oligonucleotide drug products. The 31 P qNMR method showed 7 ± 2%, 8 ± 1%, and 12 ± 1% lower concentration values compared with drug product labels for eteplirsen, inotersen, and inclisiran, respectively. Meanwhile the UV-260 nm results showed 28 ± 3%, 10 ± 3%, and 10 ± 1% lower concentrations than the label for the same three drugs. The agreement between NMR and UV for phosphorothioate (PS)-based inotersen and mostly phosphodiester (PO)-based inclisiran suggest that the labeled concentration may have been obtained using different extinction coefficients. The underestimate of UV results for eteplirsen, which has a phosphorodiamidate morpholino oligomer (PMO) structure, suggests that the UV-260 nm extinction coefficient may need to be re-established for the PMO based oligonucleotide. Therefore, the 31 P qNMR method could be a primary assay method for the oligonucleotide drug and reference standard.
Chemically modified nucleic acid molecules have been developed as oligonucleotide therapeutics, and its assay is critical in quality assurance. The common DNA/RNA quantification method using UV-260 nm can lack accuracy because of structure modifications and the possible formation of higher-order structure (HOS). Additionally, process-associated water and counterions affect the accuracy in gravimetric analysis. Thus, to improve accuracy, efficiency, and flexibility, in this work a fast (<1 h) externally referenced 31 P quantitative-NMR (qNMR) method was developed. The qNMR assay results agreed within 1−5% of the UV-260 nm results for the single-stranded DNA standards, confirming the method accuracy. Next, an NMR and UV comparison study was performed on intact oligonucleotide drug products. The 31 P qNMR method showed 7 ± 2%, 8 ± 1%, and 12 ± 1% lower concentration values compared with drug product labels for eteplirsen, inotersen, and inclisiran, respectively. Meanwhile the UV-260 nm results showed 28 ± 3%, 10 ± 3%, and 10 ± 1% lower concentrations than the label for the same three drugs. The agreement between NMR and UV for phosphorothioate (PS)-based inotersen and mostly phosphodiester (PO)-based inclisiran suggest that the labeled concentration may have been obtained using different extinction coefficients. The underestimate of UV results for eteplirsen, which has a phosphorodiamidate morpholino oligomer (PMO) structure, suggests that the UV-260 nm extinction coefficient may need to be re-established for the PMO based oligonucleotide. Therefore, the 31 P qNMR method could be a primary assay method for the oligonucleotide drug and reference standard.
A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.