2018 26th European Signal Processing Conference (EUSIPCO) 2018
DOI: 10.23919/eusipco.2018.8553273
|View full text |Cite
|
Sign up to set email alerts
|

A Preconditioned Graph Diffusion LMS for Adaptive Graph Signal Processing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
22
0
16

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
3

Relationship

3
5

Authors

Journals

citations
Cited by 16 publications
(38 citation statements)
references
References 21 publications
0
22
0
16
Order By: Relevance
“…with h (m) ∈ R N . If h (m) = h m 1 for all m, model (9) reduces to the node-invariant model (1). Otherwise, each node applies different weights to the shifted signal S m x.…”
Section: A Graph Filter and Data Modelmentioning
confidence: 99%
“…with h (m) ∈ R N . If h (m) = h m 1 for all m, model (9) reduces to the node-invariant model (1). Otherwise, each node applies different weights to the shifted signal S m x.…”
Section: A Graph Filter and Data Modelmentioning
confidence: 99%
“…(2) In that sense, any matrix which satisfies condition (2) can be used as a graph shift operator. This property of locality allows a distributed implementation [14]- [16]. There are, however, other types of shift operators which do not satisfy (2); See, e.g., the isometric operator in [6].…”
Section: Parametric Modeling Via Graph Filtersmentioning
confidence: 99%
“…Recentemente, em [7]- [9] foram aplicadas estratégias de adaptação difusa [10] para propor novas ferramentas para o processamento adaptativo de sinais sobre grafos, levando a soluções baseadas no algoritmo LMS (least-mean-squares). O algoritmo distribuído de [8] foi proposto com foco na predição de sinais sobre grafos e utiliza uma estratégia distribuída eficiente para a amostragem de sinais sobre grafos baseada em uma abordagem probabilística.…”
Section: Introductionunclassified