Abstract:In manufacturing processes, datasets intended for data driven decisions are majorly generated from time-sequenced sensor readings. Industrial sensor systems are prone to transmit inaccurate readings, which result in noisy datasets. Noisy datasets inhibit machine learning and knowledge discovery. Using a multi-stage, multi-output process dataset as an experimental case, this article reports a methodology for replacing erroneous sensor values with their predicted likely values. In the methodology, invalid values… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.