The injection of green hydrogen and biomethane is currently seen as the next step towards the decarbonization of the gas sector in several countries. However, the introduction of these gases in existent infrastructure has energetic, material and operational implications that should be carefully looked at. With regard to a fully blown green gas grid, transport and distribution will require adaptations. Furthermore, the adequate performance of end-use equipment connected to the grid must be accounted for. In this paper, a technical analysis of the energetic, material and operational aspects of hydrogen and biomethane introduction in natural gas infrastructure is performed. Impacts on gas transmission and distribution are evaluated and an interchangeability analysis, supported by one-dimensional Cantera simulations, is conducted. Existing gas infrastructure seems to be generally fit for the introduction of hydrogen and biomethane. Hydrogen content up to 20% by volume appears to be possible to accommodate in current infrastructure with only minor technical modifications. However, at the Distribution System Operator (DSO) level, the introduction of gas quality tracking systems will be required due to the distributed injection nature of hydrogen and biomethane. The different tolerances for hydrogen blending of consumers, depending on end-use equipment, may be critical during the transition period to a 100% green gas grid as there is a risk of pushing consumers off the grid.