Migration of spermatozoa in the female genital tract will be strongly influenced by the viscosity of the fluids encountered, yet little systematic analysis has been given to such a consideration. This essay reviews the series of milieux confronting a fertilising sperm during its progression to the oviduct ampulla. Two groups are discussed, first those in which ejaculation is into the vagina, second those in which semen enters the uterus during a protracted mating. Viscous glycoprotein secretions that accumulate in the oviduct isthmus of both groups before ovulation are highlighted, as is the environment generated in the ampulla by the post-ovulatory suspension of oocyte(s), cumulus cells and spermatozoa; follicular and peritoneal fluids may also be present. The viscosity of all female tract fluids responds to cyclical variations in temperature, and these exist within the oviduct near the time of ovulation. Gradations in viscosity influence the pattern and strength of sperm flagellar activity and the rate of forward movement. Measurements of sperm motility are currently made in a physiological medium of constant viscosity and temperature, thereby overlooking changes in the female genital tract. A more sophisticated approach might reveal an adequate fertilising potential in a proportion of putatively poor semen samples.