Labarca M, Nizar JM, Walczak EM, Dong W, Pao AC, Bhalla V. Harvest and primary culture of the murine aldosterone-sensitive distal nephron. Am J Physiol Renal Physiol 308: F1306 -F1315, 2015. First published March 25, 2015 doi:10.1152/ajprenal.00668.2014The aldosterone-sensitive distal nephron (ASDN) exhibits axial heterogeneity in structure and function from the distal convoluted tubule to the medullary collecting duct. Ion and water transport is primarily divided between the cortex and medulla of the ASDN, respectively. Transcellular transport in this segment is highly regulated in health and disease and is integrated across different cell types. We currently lack an inexpensive, high-yield, and tractable technique to harvest and culture cells for the study of gene expression and physiological properties of mouse cortical ASDN. To address this need, we harvested tubules bound to Dolichos biflorus agglutinin lectin-coated magnetic beads from the kidney cortex and characterized these cell preparations. We determined that these cells are enriched for markers of distal convoluted tubule, connecting tubule, and cortical collecting duct, including principal and intercalated cells. In primary culture, these cells develop polarized monolayers with high resistance (1,000-1,500 ⍀ * cm 2 ) and maintain expression and activity of key channels. These cells demonstrate an amiloride-sensitive short-circuit current that can be enhanced with aldosterone and maintain measurable potassium and anion secretion. Our method can be easily adopted to study the biology of the ASDN and to investigate phenotypic differences between wild-type and transgenic mouse models.