The diversity of immunoglobulin (Ig) and T-cell receptor (TCR) repertoires is a focal point of immunological studies. Rhesus macaques are key for modeling human immune responses, placing critical importance on the accurate annotation and quantification of their Ig and TCR repertoires. However, due to incomplete reference resources, the coverage and accuracy of the traditional targeted amplification strategies for profiling rhesus Ig and TCR repertoires are largely unknown. Here, using long read sequencing, we sequenced four Indian-origin rhesus macaque tissues and obtained high quality, full-length sequences for over 6,000 unique Ig and TCR transcripts, without the need for sequence assembly. We constructed the first complete reference set for the constant regions of all known isotypes and chain types of rhesus Ig and TCR repertoires. We show that sequence diversity exists across the entire variable regions of rhesus Ig and TCR transcripts. Consequently, existing strategies using targeted amplification of rearranged variable regions comprised of V(D)J gene segments miss a significant fraction (27% to 53% and 42% to 49%) of rhesus Ig/TCR diversity. To overcome these limitations, we designed new rhesus-specific assays that remove the need for primers conventionally targeting variable regions and allow single cell-level Ig and TCR repertoire analysis. Our improved approach will enable future studies to fully capture rhesus Ig and TCR repertoire diversity and is applicable for improving annotations in any model organism.