Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we propose and analyze a discontinuous Galerkin finite element method for solving the transient Boussinesq incompressible heat conducting fluid flow equations. This method utilizes an upwind approach to handle the nonlinear convective terms effectively. We discuss new a priori bounds for the semidiscrete discontinuous Galerkin approximations. Furthermore, we establish optimal a priori error estimates for the semidiscrete discontinuous Galerkin velocity approximation in L 2 \mathbf{L}^{2} and energy norms, the temperature approximation in L 2 L^{2} and energy norms and pressure approximation in L 2 L^{2} -norm for t > 0 t>0 . Additionally, under the smallness assumption on the data, we prove uniform in time error estimates. We also consider a backward Euler scheme for full discretization and derive fully discrete error estimates. Finally, we provide numerical examples to support the theoretical conclusions.
In this paper, we propose and analyze a discontinuous Galerkin finite element method for solving the transient Boussinesq incompressible heat conducting fluid flow equations. This method utilizes an upwind approach to handle the nonlinear convective terms effectively. We discuss new a priori bounds for the semidiscrete discontinuous Galerkin approximations. Furthermore, we establish optimal a priori error estimates for the semidiscrete discontinuous Galerkin velocity approximation in L 2 \mathbf{L}^{2} and energy norms, the temperature approximation in L 2 L^{2} and energy norms and pressure approximation in L 2 L^{2} -norm for t > 0 t>0 . Additionally, under the smallness assumption on the data, we prove uniform in time error estimates. We also consider a backward Euler scheme for full discretization and derive fully discrete error estimates. Finally, we provide numerical examples to support the theoretical conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.