Behavior studies have been conducted by scientists and philosophers who approach subjects such as star and planet trajectories, society organizations, living beings evolution and human language. With the advent of computer, new challenges have been observed in order to explore and understand the behavior variations of interactions with systems. Motivated by those challenges, this work proposes a new approach to automatically cluster, detect and identify behavior patterns. In order to validate this approach, we have modeled the knowledge embedded in interactions of handwriting signatures. The generated knowledge models were, afterwards, employed to verify signatures. Obtained results were compared to other related approaches presented in SVC2004, the First International Signature Verification Competition.