Fake news trends have overgrown in our societies over the years through social media platforms. The goal of spreading fake news can easily mislead and manipulate the public’s opinion. Many previous researchers have proposed this domain using classification algorithms or deep learning techniques. However, machine learning algorithms still suffer from high margin error, which makes them unreliable as every algorithm uses a different way of prediction. Deep learning requires high computation power and a large dataset to operate the classification model. A filtering model with a consensus layer in a multi-tier model is introduced in this research paper. The multi-tier model filters the news label correctly predicted by the first two-tier layer. The consensus layer acts as the final decision when collision results occur in the first two-tier layer. The proposed model is applied to the WEKA software tool to test and evaluate the model from both datasets. Two sequences of classification models are used in this research paper: LR_DT_RF and LR_NB_AdaBoost. The best performance of sequence for both datasets is LR_DT_RF which yields 0.9892 F1-Score, 0.9895 Accuracy, and 0.9790 Matthews Correlation Coefficient (MCC) for ISOT Fake News Dataset, and 0.9913 F1-Score, 0.9853 Accuracy, and 0.9455 MCC for CHECKED Dataset. This research could give researchers an approach for fake news detection on different social platforms and feature-based