Bacteria have developed an impressive ability to survive and propagate in highly diverse and changing environments by evolving phenotypic heterogeneity. Phenotypic heterogeneity ensures that a subpopulation is well prepared for environmental changes. The expression bet hedging is commonly (but often incorrectly) used by molecular biologists to describe any observed phenotypic heterogeneity. In evolutionary biology, however, bet hedging denotes a risk‐spreading strategy displayed by isogenic populations that evolved in unpredictably changing environments. Opposed to other survival strategies, bet hedging evolves because the selection environment changes and favours different phenotypes at different times. Consequently, in bet hedging populations all phenotypes perform differently well at any time, depending on the selection pressures present. Moreover, bet hedging is the only strategy in which temporal variance of offspring numbers per individual is minimized. Our paper aims to provide a guide for the correct use of the term bet hedging in molecular biology.