“…Then, the most promising phenomena-based structures are transformed into unit operations [5,21]. Recent advancements using the PBBs methodology include the synthesis and intensification of the production of dimethyl carbonate with CO 2 utilization with consideration of operational feasibility, economics, life cycle assessment factors, and sustainability criteria [22], the dehydration of ethanol through a membrane-assisted distillation process (taking into account an economic criterion) [23], the transesterification of propylene carbonate with methanol to generate dimethyl carbonate and 1,2-propanediol (considering an economic criterion) [24], the intensification of the aldolization of an ethylene glycol and 1,2-butanediol mixture with acetaldehyde to produce 2-methyl-1,3-dioxolane and 4-ethyl-2-methyl-1,3-dioxolane [25], the esterification of isoamyl alcohol with acetic acid for the production of isoamyl acetate and the aldolization of ethylene glycol and 1,2-butanediol with acetaldehyde for the production of 2-methyl-1,3-dioxolane and 4-ethyl-2-methyl-1,3-dioxolane (taking into consideration an inherent safety assessment in addition to economic and sustainability criteria) [26], the production of ethylene glycol through the hydrolysis of ethylene oxide using an ε-constraint-based multiobjective optimization framework [27], the production of dimethyl ether from methanol (considering energy, CO 2 emissions, and sustainability indicators) [28], and the production of ethyl lactate from ethanol and lactic acid (considering economic, environmental, sustainability, and inherent safety criteria) [29]. In addition, Garg et al [30] presented the key concepts and step-by-step workflow of the phenomena-based intensification method for hybrid separation schemes along with a summary of published case studies with novel solutions for chemical and biochemical processes.…”