In the present work, the hydrothermal approach is employed to develop 1D-TiO2 nanorod array memristive devices and studied the effect of hydrothermal growth temperature on TiO2 memristive devices. X-ray diffraction (XRD) analysis suggested that the rutile phase is dominant in the developed TiO2 nanorod array. Field emission scanning electron microscopy (FESEM) images show well adherent and pinhole free one dimensional (1D) TiO2 nanorods. The presence of titanium and oxygen in all the samples was confirmed by energy dispersive X-ray spectroscopy (EDS). Furthermore, growth of the 1D TiO2 nanorods depends on the growth temperature and uniform growth is observed at the higher growth temperatures. The well-known memristive hysteresis loop is observed in the TiO2 nanorod thin films. Furthermore, resistive switching voltages, the shape of I-V loops and (non)rectifying behavior changed as the growth temperature varied from 140 o C to 170 o C. The biological synapse properties such as paired-pulse facilitation and shortterm depression are observed in some devices. The detailed electrical characterizations suggested that the developed devices show doubled valued charge-magnetic flux characteristic and charge transportation is due to the Ohmic and space charge limited current.