Network data is composed of nodes and edges. Successful application of machine learning/deep<br>learning algorithms on network data to make node classification and link prediction have been shown<br>in the area of social networks through which highly customized suggestions are offered to social<br>network users. Similarly one can attempt the use of machine learning/deep learning algorithms on<br>biological network data to generate predictions of scientific usefulness. In the presented work,<br>compound-drug target interaction network data set from bindingDB has been used to train deep<br>learning neural network and a multi class classification has been implemented to classify PubChem<br>compound queried by the user into class labels of PBD IDs. This way target interaction prediction for<br>PubChem compounds is carried out using deep learning. The user is required to input the PubChem<br>Compound ID (CID) of the compound the user wishes to gain information about its predicted<br>biological activity and the tool outputs the RCSB PDB IDs of the predicted drug target interaction for<br>the input CID. Further the tool also optimizes the compound of interest of the user toward drug<br>likeness properties through a deep learning based structure optimization with a deep learning based<br>drug likeness optimization protocol. The tool also incorporates a feature to perform automated In<br>Silico modelling for the compounds and the predicted drug targets to uncover their protein-ligand<br>interaction profiles. The program is hosted, supported and maintained at the following GitHub<br><div>repository</div><div><br></div><div>https://github.com/bengeof/Compound2DeNovoDrugPropMax</div><div><br></div>Anticipating the rise in the use of quantum computing and quantum machine learning in drug discovery we use<br>the Penny-lane interface to quantum hardware to turn classical Keras layers used in our machine/deep<br>learning models into a quantum layer and introduce quantum layers into classical models to produce a<br>quantum-classical machine/deep learning hybrid model of our tool and the code corresponding to the<br><div>same is provided below</div><div><br></div>https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax<br>