Dysregulation of cytokines in the bone marrow (BM) microenvironment promotes acute myeloid leukemia (AML) cell growth. Due to the complexity and low throughput of in vivo stem-cell based assays, studying the role of cytokines in the BM niche in a screening setting is challenging. Here, we developed an ex vivo cytokine screen using 11 arrayed molecular barcodes, allowing for a competitive in vivo readout of leukemia-initiating capacity. With this approach, we assessed the effect of 114 murine cytokines on MLL-AF9 AML mouse cells and identified the tumor necrosis factor ligand superfamily member 13 (TNFSF13) as a positive regulator of leukemia-initiating cells. By using Tnfsf13−/− recipient mice, we confirmed that TNFSF13 supports leukemia initiation also under physiological conditions. TNFSF13 was secreted by normal myeloid cells but not by leukemia mouse cells, suggesting that mature myeloid BM cells support leukemia cells by secreting TNFSF13. TNFSF13 supported leukemia cell proliferation in an NF-κB-dependent manner by binding TNFRSF17 and suppressed apoptosis. Moreover, TNFSF13 supported the growth and survival of several human myeloid leukemia cell lines, demonstrating that our findings translate to human disease. Taken together, using arrayed molecular barcoding, we identified a previously unrecognized role of TNFSF13 as a positive regulator of AML-initiating cells. The arrayed barcoded screening methodology is not limited to cytokines and leukemia, but can be extended to other types of ex vivo screens, where a multiplexed in vivo read-out of stem cell functionality is needed.