2005
DOI: 10.4007/annals.2005.162.1065
|View full text |Cite
|
Sign up to set email alerts
|

A proof of the Kepler conjecture

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

4
634
0
11

Year Published

2007
2007
2017
2017

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 846 publications
(649 citation statements)
references
References 5 publications
4
634
0
11
Order By: Relevance
“…Specifically, we considered size ratios 2, 3 and 4, and for each s we explored several values of the exponents with n 1 ∈ [1, 50] and n 2 ∈ [1,7]. This combination of exponents was selected in an attempt to find a set of parameters that are compatible to those of the Hertzian system in its most interesting region of the phase diagram, i.e.…”
Section: Introductionmentioning
confidence: 99%
“…Specifically, we considered size ratios 2, 3 and 4, and for each s we explored several values of the exponents with n 1 ∈ [1, 50] and n 2 ∈ [1,7]. This combination of exponents was selected in an attempt to find a set of parameters that are compatible to those of the Hertzian system in its most interesting region of the phase diagram, i.e.…”
Section: Introductionmentioning
confidence: 99%
“…The established value is about 13.5% lower than the corresponding one for regular packings of non-overlapping hard spheres (<p reg ~ 0.7404). The later value, initially conjectured by Kepler and proven recently by Hales (Hales, 2005;Hales et al, 2010), corresponds to the packing density of the face-centered cubic (fee) lattice. While no such proof exists for the corresponding densest limit of random sphere packings the concept of the maximally random jammed (MRJ) state provides a precise mathematical and geometrical definition of the aforementioned state (Donev et al, 2005a(Donev et al, , 2005bTorquato et al, 2000).…”
Section: Introductionmentioning
confidence: 99%
“…Observa-se também que as densidades de empacotamento obtidas para cada classe apresentam valores sempre menores que 0,450. Este valor pode ser considerado baixo, sabendo-se que a máxima densidade de empacotamento que se atinge em misturas com grãos uniformes é igual a 0,740, conforme proposto pelo matemático alemão Johannes Kepler no século XVII, problema este comprovado numericamente apenas no início do século XXI [25]. Esta densidade de empacotamento máxima é alcançada considerando o empacotamento de uma rede cúbica de face centrada de partículas perfeitamente esféricas, onde cada partícula foi posicionada no sistema uma a uma.…”
Section: Materiaisunclassified