The grid-tied inverter synchronizes with the network on the basis of the instantaneous voltage phase angle. This angle is computed by the so-called synchronization algorithms. During grid disturbances, it is estimated with a certain accuracy, which varies for different disturbances and depends on the choice of algorithm.The tests presented here determine how to make an optimal selection of the synchronization algorithm. The research methods used are modeling, simulation and analysis of the results obtained. One of the most important outcomes is the determination of the root-mean-square sync error and its dynamics denotation. The research conclusions should be of particular interest to designers of distributed energy systems with a large number of inverter energy sources.