This study investigated how light exposure duration affects melatonin suppression, a wellestablished marker of circadian phase, and whether adolescents (13-18 years) are more sensitive to short-wavelength (blue) light than adults (32-51 years). Twenty-four participants (12 adolescents, 12 adults) were exposed to three lighting conditions during successive 4-h study nights that were separated by at least one week. In addition to a dim light (<5 lux) control, participants were exposed to two light spectra (warm (2700 K) and cool (5600 K)) delivering a circadian stimulus of 0.25 at eye level. Repeated measures analysis of variance revealed a significant main effect of exposure duration, indicating that a longer duration exposure suppressed melatonin to a greater degree. The analysis further revealed a significant main effect of spectrum and a significant interaction between spectrum and participant age. For the adolescents, but not the adults, melatonin suppression was significantly greater after exposure to the 5600 K intervention (43%) compared to the 2700 K intervention (29%), suggesting an increased sensitivity to shortwavelength radiation. These results will be used to extend the model of human circadian phototransduction to incorporate factors such as exposure duration and participant age to better predict effective circadian stimulus.