Abstract. Prostate cancer is one of the most common types of cancer in males. Heterogeneous genomic aberrations may lead to prostate cancer onset, progression and metastasis. This heterogeneity also contributes to the variety in cancer risk and outcomes, different drug responses and progression, observed between individual patients. Classical prognostic factors, including prostate-specific antigen, Gleason Score and clinical tumor staging, are not sufficient to portray the complexity of a clinically relevant cancer diagnosis, risk prognosis, treatment choice and therapy monitoring. There is a requirement for novel genetic biomarkers in order to understand the oncogenic heterogeneity in a patient-personalized clinical setting and to improve the efficacy of risk prognosis and treatment choice. A number of biomarkers and gene panels have been established from patient sample cohort studies. These previous studies have provided distinct information to the investigation of heterogeneous malignancy in prostate cancer, which aids in clinical decision-making. Biomarker-guided therapies may facilitate the effective selection of drugs during early treatment; therefore, are beneficial to the individual patient. A non-invasive approach allows for convenient and repeated sampling to screen for cancer and monitor treatment response without the requirement for invasive tissue biopsies. With the current availability of numerous advanced technologies, reliable detection of the minimal tumor residues present following treatment may become clinical practice and, therefore, inform further in the field of personalized medicine.