Purpose: Functional imaging biomarkers of cancer treatment response offer the potential for early determination of outcome through the assessment of biochemical, physiologic, and microenvironmental readouts. Cell death may result in an immunologic response, thus complicating the interpretation of biomarker readouts. This study evaluated the temporal effect of treatment-associated inflammatory activity on diffusion magnetic resonance imaging and 2-[ Experimental Design: Rats with intracerebral 9L gliosarcomas were separated into four groups consisting of control, an immunosuppressive agent dexamethasone (Dex), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and BCNU+Dex. Animals were imaged using diffusion-weighted magnetic resonance imaging and FDG-PET at 0, 3, and 7 days posttreatment.Results: In the BCNU-and BCNU+Dex-treated animal groups, diffusion values increased progressively over the 7-day study period to ∼23% over baseline. The FDG percentage change of standard uptake value decreased at day 3 (−30.9%) but increased over baseline levels at day 7 (+20.1%). FDG-PET of BCNU+Dex-treated animals were found to have percentage of standard uptake value reductions of −31.4% and −24.7% at days 3 and 7, respectively, following treatment. Activated macrophages were observed on day 7 in the BCNU treatment group with much fewer found in the BCNU+Dex group.Conclusions: Results revealed that treatment-associated inflammatory response following tumor therapy resulted in the accentuation of tumor diffusion response along with a corresponding increase in tumor FDG uptake due to the presence of glucose-consuming activated macrophages. The dynamics and magnitude of potential inflammatory response should be considered when interpreting imaging biomarker results. Clin Cancer Res; 16(5); 1542-52. ©2010 AACR.