The effect of citric acid on rice starch gelatinization and low-temperature (4 o C) storage was studied in order to produce rice cake with a lower retrogradation rate. A citric acid solution in the ratio of 0, 0.5, 1.0, and 1.5% (w/w) of the water used during production was utilized. The gelatinization properties, gel strength, thermal properties, and texture analysis were evaluated to determine the retrogradation rate. The result showed that acid hydrolysis occurred in samples treated with citric acid. Thus, increasing citric acid decreased gelatinization temperature (58.63±1.98 to 45.84±1.24 o C). The moduli of elasticity increased with increasing citric acid concentration, indicating an increased gel strength. Thermal analysis of starch showed that the onset, peak, and conclusion temperatures of retrogradation were increased significantly with the storage period and decreased with citric acid concentration. After 72 h of low-temperature storage (4 o C), the retrogradation rate was lowest in the rice cake with 1.5% citric acid solution, with an increased ratio of 12.01 to 13.60% compared to the control sample, with a ratio of 12.99 to 43.54%. This shows a high retrogradation rate in the control sample. Additionally, sensory properties and retrogradation ratio suggest that the addition of 1.0% citric acid solution during rice cake production is efficient in retarding the retrogradation without an adverse effect on the rice cake modeling and acceptance.