Structural relationships between the myofibrillar contractile apparatus and the enzymes that generate ATP for muscle contraction are not well understood. We explored whether glycolytic enzymes are localized in Drosophila flight muscle and whether localization is required for function. We find that glycerol-3-phosphate dehydrogenase (GPDH) is localized at Z-discs and M-lines. The glycolytic enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are also localized along the sarcomere with a periodic pattern that is indistinguishable from that of GPDH localization. Furthermore, localization of aldolase and GAPDH requires simultaneous localization of GPDH, because aldolase and GAPDH are not localized along the sarcomere in muscles of strains that carry Gpdh null alleles. In an attempt to understand the process of glycolytic enzyme colocalization, we have explored in more detail the mechanism of GPDH localization. In flight muscle, there is only one GPDH isoform, GPDH-1, which is distinguished from isoforms found in other tissues by having three C-terminal amino acids: glutamine, asparagine, and leucine. Transgenic flies that can produce only GPDH-1 display enzyme colocalization similar to wild-type flies. However, transgenic flies that synthesize only GPDH-3, lacking the C-terminal tripeptide, do not show the periodic banding pattern of localization at Z-discs and M-lines for GPDH. In addition, neither GAPDH nor aldolase colocalize at Z-discs and M-lines in the sarcomeres of muscles from GPDH-3 transgenic flies. Failure of the glycolytic enzymes to colocalize in the sarcomere results in the inability to fly, even though the full complement of active glycolytic enzymes is present in flight muscles. Therefore, the presence of active enzymes in the cell is not sufficient for muscle function; colocalization of the enzymes is required. These results indicate that the mechanisms by which ATP is supplied to the myosin ATPase, for muscle contraction, requires a highly organized cellular system.