A stationary digital tomosynthesis system using 43 carbon nanotube (CNT) field emission X-ray sources has been developed to overcome some issues in traditional chest tomography synthesis systems using a single X-ray source. This new system utilizes CNTs to digitize X-ray source, allowing for the acquisition of high-resolution 3D X-ray images without motion blur. The system has been compared to a traditional tomosynthesis system using a thermionic source based on filament. This study reports a multi-array X-ray device, in which a body part made of an insulating material, which is a non-metallic material, provides a natural insulating environment to generate high-performance X-ray devices. In this study, the new CNT field emitter-based X-ray sources are designed, fabricated, and developed to improve resolution compared to the filament-based X-ray sources. Also, we compare the geometric difference between two tomosynthesis systems, and it is expected to provide high-resolution 3D images for chest diagnosis in the medical field.