Font classification of oracle bone inscriptions serves as a crucial basis for determining the historical period to which they belong and holds significant importance in reconstructing significant historical events. However, conventional methods for font classification in oracle bone inscriptions heavily rely on expert knowledge, resulting in low efficiency and time-consuming procedures. In this paper, we proposed a novel recurrent graph neural network (R-GNN) for the automatic recognition of oracle bone inscription fonts. The proposed method used convolutional neural networks (CNNs) to perform local feature extraction and downsampling on oracle bone inscriptions. Furthermore, it employed graph neural networks (GNNs) to model the complex topologiure and global contextual information of oracle bone inscriptions. Finally, we used recurrent neural networks (RNNs) to effectively combine the extracted local features and global contextual information, thereby enhancing the discriminative power of the R-GNN. Extensive experiments on our benchmark dataset demonstrate that the proposed method achieves a Top-1 accuracy of 88.2%, significantly outperforming the competing approaches. The method presented in this paper further advances the integration of oracle bone inscriptions research and artificial intelligence. The code is publicly available at: https://github.com/yj3214/oracle-font-classification.