Background
Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed.
Results
SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism.
Conclusions
SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.