This work deals with the problem of controlling the outlet temperature of a tubular heat exchanger system by means of flow pressure. The usual industrial case is to try to control the outlet temperature by either the temperature or the flow of the fluid, which flows through the shell tube. But, in some situations, this is not possible, due to the fact that the whole of system coefficients variation cannot quite be covered by control action. In this case, the system behavior must precisely be modeled and appropriate control action needs to be obtained based on novel techniques. A new multiple models control strategy using the well-known linear generalized predictive control (LGPC) scheme has been proposed, in this paper. The main idea of the proposed control strategy is to represent the operating environments of the system, which have a wide range of variation with respect to time by multiple explicit linear models. In this strategy, the best model of the system is accurately identified, at each instant of time, by an intelligent decision mechanism (IDM), which is organized based on both new recursive weight generator and fuzzy adaptive Kalman filter approaches. After that, the adaptive algorithm is implemented on the chosen model. Finally, for having a good tracking performance, the generalized predictive control is instantly updated and its control action is also applied to the system. For demonstrating the effectiveness of the proposed approach, simulations are all done and the results are also compared with those obtained using a nonlinear GPC (NLGPC) approach that is realized based on the Wiener model of the system. The results can verify the validity of the proposed control scheme.