Proceedings. Frontiers in Education. 36th Annual Conference 2006
DOI: 10.1109/fie.2006.322537
|View full text |Cite
|
Sign up to set email alerts
|

A Qualitative Comparison of Techniques for Student Modeling in Intelligent Tutoring Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
16
0
3

Year Published

2013
2013
2020
2020

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 33 publications
(19 citation statements)
references
References 11 publications
0
16
0
3
Order By: Relevance
“…Uyarlanabilir bir sistem tasarlamak için öncelikle öğrencinin mevcut özellikleri nedir? sorusuna yanıt aranması gerekir (Gonzalez, Burguillo ve Llamas, 2006). Öğrenci özelliklerinin bir kısmı statik, diğer bir kısmı ise dinamiktir.…”
Section: Introductionunclassified
“…Uyarlanabilir bir sistem tasarlamak için öncelikle öğrencinin mevcut özellikleri nedir? sorusuna yanıt aranması gerekir (Gonzalez, Burguillo ve Llamas, 2006). Öğrenci özelliklerinin bir kısmı statik, diğer bir kısmı ise dinamiktir.…”
Section: Introductionunclassified
“…• "Domain Independent Information": It is information about the student that "may include learning goals, cognitive aptitudes, measures for motivation state, preferences about the presentation method, factual and historic data, etc." With this information the system "adapts the learning sequence accordingly to help him/her in navigating through the course" [18].…”
Section: Recommendationsmentioning
confidence: 99%
“…They guide the user basing their decisions on user actions and knowledge (data) about the learning project, which is known and controlled by the system. In order to adapt the actions to each user, ITSs employ a user model that consists of two parts [18]:…”
Section: Recommendationsmentioning
confidence: 99%
“…Bayesian networks are also being used to address user modeling problems in different types of systems (Heckerman, Horvitz, & Rathwani, 1989;Horvitz, Breese, Heckerman, Hovel, & Rommelse, 1998;Jameson, 1996;Vegas, 1995). Several studies conducted on the comparison of machine learning techniques used in student modeling systems show that Bayesian networks are effective for meeting the student modeling challenge (Gonzalez, Burguillo, & Llamas, 2006;Hamalainen & Vinni, 2006;Kotsiantis, Pierrakeas, & Pintelas, 2003;MinaeliBigdoli, Kashy, Kortemeyer, & Punch, 2003). Hence, a dynamic Bayesian inference mechanism for students modeling has been proposed in this study.…”
Section: Methodsmentioning
confidence: 99%