2015
DOI: 10.1016/j.cageo.2015.09.012
|View full text |Cite
|
Sign up to set email alerts
|

A quality-aware spatial data warehouse for querying hydroecological data

Abstract: International audienceAddressing data quality issues in information systems remains a challenging task. Many approaches only tackle this issue at the extract, transform and load steps. Here we define a comprehensive method to gain greater insight into data quality characteristics within data warehouse. Our novel architecture was implemented for an hydroecological case study where massive French watercourse sampling data are collected. The method models and makes effective use of spatial, thematic and temporal … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 14 publications
0
5
0
1
Order By: Relevance
“…Our method was applied to sequential datasets, dealing with biological and physico-chemical parameters sampled in waterbodies [3]. Data were collected from french databases during the ANR 11 MONU 14 Fresqueau project.…”
Section: Resultsmentioning
confidence: 99%
“…Our method was applied to sequential datasets, dealing with biological and physico-chemical parameters sampled in waterbodies [3]. Data were collected from french databases during the ANR 11 MONU 14 Fresqueau project.…”
Section: Resultsmentioning
confidence: 99%
“…For illustration purpose, we rely on data collected during the Fresqueau project which aimed to study biological and physico-chemical parameters sampled in waterbodies, in order to assess and monitor the hydrobiologic quality of running waters [47]. Data were collected from various French databases such as the ones proposed by the Eau France portal 9 .…”
Section: Methodsmentioning
confidence: 99%
“…Existen trabajos relacionados a esta temática, haciendo uso del ADE en distintos campos de aplicación; tales como: i) visualización de áreas geográficas de intervención para la ejecución de proyectos de vinculación (Pizarro et al, 2018); ii) detección de crimenes (Sale et al, 2018); puntos calientes de biodiversidad ; estudios hidro-ecológicos (Berrahou et al, 2015); análisis de datos demográficos; (González y González, 2013); entre otros. Estos campos de aplicación hacen pertinente la propuesta del diseño de la arquitectura de un ADE, de acuerdo a las necesidades del usuario final.…”
Section: Introductionunclassified