Natural risks comprise a whole range of disasters and dangers, requiring comprehensive management through advanced assessment, forecasting, and warning systems. Our specific focus is on landslides in difficult terrains. The evaluation of landslide risks employs sophisticated multicriteria models, such as the weighted sum GIS approach, which integrates qualitative parameters. Despite the challenges posed by the rugged terrain in Northern Algeria, it is paradoxically home to a dense population attracted by valuable hydro-agricultural resources. The goal of our research is to study landslide risks in these areas, particularly in the Mila region, with the aim of constructing a mathematical model that integrates both hazard and vulnerability considerations. This complex process identifies threats and their determining factors, including geomorphology and socio-economic conditions. We developed two algorithms, the analytic hierarchy process (AHP) and the fuzzy analytic hierarchy process (FAHP), to prioritize criteria and sub-criteria by assigning weights to them, aiming to find the optimal solution. By integrating multi-source data, including satellite images and in situ measurements, into a GIS and applying the two algorithms, we successfully generated landslide susceptibility maps. The FAHP method demonstrated a higher capacity to manage uncertainty and specialist assessment errors. Finally, a comparison between the developed risk map and the observed risk inventory map revealed a strong correlation between the thematic datasets.