Abstract:Intrusion detection systems (IDS) play a vital role in protecting networks from malicious attacks. Modern IDS use machine-learning or deep-learning models to deal with the diversity of attacks that malicious users may employ. However, effective machine-learning methods incur a considerable cost in both the pretraining stage and the online detection process itself. Accordingly, this study proposes a quantitative logarithmic transformation-based intrusion detection system (QLT-IDS) that uses a straightforward st… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.