Thermoelectric transport is widely used to study Abrikosov vortex dynamics in unconventional superconductors. However, only a few thermoelectric studies have been conducted near the dimensional crossover that occurs when the vortex‐vortex interaction length scale becomes comparable to the sample size. Here, the effects of finite size on the dissipation mechanisms of the Nernst effect in the optimally doped Bi2Sr2CaCu2O8 + x high‐temperature superconductor are reported, down to the atomic length limit. To access this regime, a new generation of thermoelectric chips based on silicon nitride microprinted circuit boards is developed. These chips ensure optimized signals while preventing sample deterioration. The results demonstrate that lateral confinement at the nanoscale can effectively reduce vortex dissipation. Investigating vortex dissipation at the micro‐ and nano‐scale is essential for creating stable, miniaturized superconducting circuits.