Effective access points (APs) selection is a crucial step in localization systems. It directly affects both localization accuracy and computational efficiency. Classical APs selection algorithms are usually computationally expensive, hindering the deployment of localization systems in a large worldwide scale.In this paper, we introduce a quantum APs selection algorithm for large-scale localization systems. The proposed algorithm leverages quantum annealing to eliminate redundant and noisy APs. We explain how to formulate the APs selection problem as a quadratic unconstrained binary optimization (QUBO) problem, suitable for quantum annealing, and how to select the minimum number of APs that maintain the same overall localization system accuracy as the complete APs set. Based on this, we further propose a logarithmic-complexity algorithm to select the optimal number of APs.We implement our quantum algorithm on a real D-Wave Systems quantum machine and assess its performance in a real test environment for a floor localization problem. Our findings reveal that by selecting fewer than 14% of the available APs in the environment, our quantum algorithm achieves the same floor localization accuracy as utilizing the entire set of APs and a superior accuracy over utilizing the reduced dataset by classical APs selection counterparts. Moreover, the proposed quantum algorithm achieves more than an order of magnitude speedup over the corresponding classical APs selection algorithms, emphasizing the efficiency of the proposed quantum algorithm for large-scale localization systems.