The application of computational methods in enantioselective catalysis has evolved from the rationalization of the observed stereochemical outcome to their prediction and application to the design of chiral ligands. This Perspective provides an overview of the current methods used, ranging from atomistic modeling of the transition structures involved to correlation-based methods with particular emphasis placed on the Q2MM/CatVS method. Using three enantioselective palladium-catalyzed reactions, namely, the conjugate addition of arylboronic acids to enones, the enantioselective redox relay Heck reaction, and the Tsuji−Trost allylic amination as case studies, we argue that computational methods have become truly equal partners to experimental studies in that, in some cases, they are able to correct published stereochemical assignments. Finally, the consequences of this approach to data-driven methods are discussed.