Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Octans is one of the most distant ($d pc) young stellar associations of the solar neighbourhood, and it has not yet been sufficiently explored. Its age is still poorly constrained in the literature and requires further investigation. We take advantage of the state-of-the-art astrometry delivered by the third data release of the Gaia space mission combined with radial velocity measurements obtained from high-resolution spectroscopy to compute the 3D positions and 3D spatial velocities of the stars and derive the dynamical traceback age of the association. We created a clean sample of cluster members by removing potential outliers from our initial list of candidate members. We then performed an extensive traceback analysis using different subsamples of stars, different metrics to define the size of the association, and different models for the Galactic potential to integrate the stellar orbits in the past. We derive a dynamical age of $34^ $ Myr that is independent from stellar models and represents the most precise age estimate currently available for the Octans association. After correcting the radial velocity of the stars for the effect of gravitational redshift, we obtain a dynamical age of $33^ $ Myr, which is in very good agreement with our first solution. This shows that the effect of gravitational redshift is small for such a distant young stellar association. Our result is also consistent with the less accurate age estimates obtained in previous studies from lithium depletion (30-40 Myr) and isochrones (20-30 Myr). By integrating the stellar orbits in time, we show that the members of Octans and Octans-Near had different locations in the past, which indicates that the two associations are unrelated despite the close proximity in the sky. This is the first reliable and precise dynamical age result for the Octans young stellar association. Our results confirm that it is possible to derive precise dynamical ages via the traceback method for $ Myr old stellar clusters at about $ pc with the same precision level that has been achieved in other studies for young stellar groups within 50 pc of the Sun. This represents one more step towards constructing a self-consistent age scale based on the 3D space motion of the stars in the young stellar clusters of the solar neighbourhood.
Octans is one of the most distant ($d pc) young stellar associations of the solar neighbourhood, and it has not yet been sufficiently explored. Its age is still poorly constrained in the literature and requires further investigation. We take advantage of the state-of-the-art astrometry delivered by the third data release of the Gaia space mission combined with radial velocity measurements obtained from high-resolution spectroscopy to compute the 3D positions and 3D spatial velocities of the stars and derive the dynamical traceback age of the association. We created a clean sample of cluster members by removing potential outliers from our initial list of candidate members. We then performed an extensive traceback analysis using different subsamples of stars, different metrics to define the size of the association, and different models for the Galactic potential to integrate the stellar orbits in the past. We derive a dynamical age of $34^ $ Myr that is independent from stellar models and represents the most precise age estimate currently available for the Octans association. After correcting the radial velocity of the stars for the effect of gravitational redshift, we obtain a dynamical age of $33^ $ Myr, which is in very good agreement with our first solution. This shows that the effect of gravitational redshift is small for such a distant young stellar association. Our result is also consistent with the less accurate age estimates obtained in previous studies from lithium depletion (30-40 Myr) and isochrones (20-30 Myr). By integrating the stellar orbits in time, we show that the members of Octans and Octans-Near had different locations in the past, which indicates that the two associations are unrelated despite the close proximity in the sky. This is the first reliable and precise dynamical age result for the Octans young stellar association. Our results confirm that it is possible to derive precise dynamical ages via the traceback method for $ Myr old stellar clusters at about $ pc with the same precision level that has been achieved in other studies for young stellar groups within 50 pc of the Sun. This represents one more step towards constructing a self-consistent age scale based on the 3D space motion of the stars in the young stellar clusters of the solar neighbourhood.
We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine-learning tool, named SMDET, applied to time-series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate’s spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T-subdwarf candidate, two extreme T-subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for two objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine-learning tools as a new large-scale discovery technique.
Blanco 1 is an ≈130 Myr open cluster located 240 pc from the Sun, below the Galactic plane. Recent studies have reported the existence of diffuse tidal tails extending 50–60 pc from the cluster center based on the positions and velocities measured by Gaia. To independently assess the reality and extent of this structure, we used light curves generated from TESS full-frame images to search for photometric rotation periods of stars in and around Blanco 1. We detected rotation periods down to a stellar effective temperature of ≈3100 K in 347 of the 603 cluster member candidates for which we have light curves. For cluster members in the core and candidate members in the tidal tails, both within a temperature range of 4400–6200 K, 74% and 72% of the rotation periods, respectively, are consistent with the single-star gyrochronological sequence. In contrast, a comparison sample of field stars yielded gyrochrone-consistent rotation periods for only 8.5% of the stars. The tidal tail candidates’ overall conformance to the core members’ gyrochrone sequence implies that their contamination ratio is consistent with zero and <0.33 at the 2σ level. This result confirms the existence of Blanco 1 tidal tails and doubles the number of Blanco 1 members for which there are both spatio-kinematic and rotation-based cluster membership verification. Extending the strategy of using TESS light curves for gyrochronology to other nearby young open clusters and stellar associations may provide a viable strategy for mapping out their dissolution and broadening the search for young exoplanets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.