Abstract:In this dissertation, we view matrix frames as representations of quivers and study them within the general framework of Quiver Invariant Theory. We are particularly interested in radial isotropic and Parseval matrix frames. Using methods from Quiver Invariant Theory [CD21], we first prove a far-reaching generalization of Barthe's Theorem [Bar98] on vectors in radial isotropic position to the case of matrix frames (see Theorems 5.13(3) and 4.12). With this tool at our disposal, we generalize the Paulsen proble… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.